Report on Compliance with New Accreditation Standards
Fall 2011

Triton College
River Grove, Illinois

Signature of Program Director

Date
Standard B2.1b & B2.2b
These standards require the Program Director to hold a master’s degree and the Clinical Coordinator (if program has one) to hold a bachelor’s degree no later than January 1, 2018. Is the program in compliance with these standards? If not, what is being done to ensure compliance by 2018?

The Program Director for this program holds a Master in Education received 12/4/1989 and is a doctoral candidate who is currently ABD and writing her dissertation. This program is in compliance with this standard.

Appendix item #1: Attach photocopies of diplomas to confirm compliance, if they have not been previously submitted to the JRCNMT in a self-study or other report.

C2.1 Prerequisites
Is the program in compliance with the prerequisite changes? If not, explain why and when compliance is expected.

The students accepted for the program beginning fall 2011 were the first class that was evaluated for acceptance into the program using the new prerequisites. Currently the pre-requisites for program admission include that students must score 4 or better on reading and writing section of the college’s placement exam or course equivalency, PHY100 (General Physics) and MAT110 (College Algebra). Completion of the Math and Science pre-requisite must not be more than 5 years old. In place of MAT110 students can score at level 8 on the college’s math placement test in the past two years. All coursework must be completed with a grade of "C" or better.

As the program’s new curriculum was just approved by the college and the Illinois Community College Board (ICCB) in spring 2011, officially the new prerequisite could not be published but students attending Information Sessions for the program were alerted to the upcoming change. Because there were many applicants that lacked the General Physics prerequisite, some students were admitted provisionally with their seat in the program contingent that they pass the General Physics course by fall semester. All but 3 of the accepted students for the fall 2011 class completed the prerequisite before the fall semester. These 3 students had commitments in the summer or scheduling conflicts which precluded them from taking the course in the summer but are completing the course concurrently with their first semester in the program.

This program is in compliance with this standard.

Appendix item #2: Include a copy of a published program document listing prerequisites for admission. This may be a page from the college catalog, the program website, a recruitment brochure or similar item.

C2.2 Professional curriculum
Is the program in compliance with the updated professional curriculum? If not, explain why and when compliance is expected.

The program is currently including all aspects of the professional curriculum in the nuclear medicine curriculum offered.

Appendix item #3: Attach completed JRCNMT Form D Curriculum.
Clinical education in PET/CT
Clinical education must be provided in PET/CT. Does the program have dedicated clinical education time in PET/CT for all students? At how many clinical affiliates? What is the length of the rotation?

This program is affiliated with 14 clinical affiliates and 9 of these affiliates provide clinical rotations through their PET area. As all students rotate through 3 different clinical affiliates during their clinical training they are assured a rotation in at least one facility that performs PET imaging. Students complete their PET training in facilities like any other area of proficiency. Each facility arranges for the student’s rotation through the PET area based on scheduled set times of rotation or as part of their rotation as a whole, learning in that area when patients are scheduled for studies. Some departments are in the early stages of developing their PET practice so do not necessarily have the patient load to keep the students active in PET for whole days so when this situation presents itself students maximize their learning experience spending their day in other areas. In reviewing the current and past rotation schedule for students, most students are able to experience 2 clinical affiliates that are equipped with PET in their department. Generally students spend at least 2 weeks in their PET rotations.

This program is in compliance with this standard.

Appendix item #4: Attach a copy of the program’s PET/CT competency form(s).

B4.2 PET/CT clinical affiliates
Competency-based clinical education in PET/CT is now required and competencies can only be completed in recognized major clinical affiliate sites. Are all the program’s PET/CT clinical assignment areas at JRCNMT-recognized major clinical affiliates? If not, please submit a major affiliate application for each existing site that must be reclassified or any new affiliate needing approval.

All PET/CT clinical assignments for students are completed at JRCNMT recognized major clinical affiliates. This program is in compliance with this standard.

D2 Publishing program outcomes
No narrative.

Appendix item #5: Attach a copy of the published webpage or program brochure containing program outcomes demonstrating student achievement and program performance.

E1.1 Program Assessment
A list of 7 items programs must track is included in this Standard (page 10). Please list each item and explain the process the program uses to collect the data and how frequently it is collected. Also explain how, when and by whom the data is analyzed. Please do not include any actual outcomes data in this report.
Student attrition
Attrition data is collected and kept by Program Director for each semester. This data is reported in college reports such as the Internal Program Review (IPR) which all college programs complete on an annual basis. This information is reviewed by the coordinator and college administration. Attrition data is also reported in the 5 year report to the Illinois Community College Board (ICCB) on a cyclic basis. This program will next have to report for this assessment in 2012.

Faculty attrition
As a program of only one faculty member for the past 7 years, there is really not a need to maintain this data. Previous to 7 years, the college employed one faculty member to serve as program director and sole instructor for the program for 26 years.

Student evaluations of individual didactic courses, clinical experiences and faculty
Didactic Courses: In accordance with the faculty and college contact, individual course are reviewed on a 4 year schedule for tenured faculty. During this review the students complete the evaluations of their courses. This data is reviewed by the coordinator and the administration. Graduates complete a Graduate survey after completing the program which includes review of didactic courses. This data is reviewed by the program coordinator.

Clinical experiences: Students complete evaluations on each of their rotations after completing them. This data is reviewed by the coordinator and shared with the clinical instructors on an annual basis.

Faculty Evaluations: According to the policies and contractual agreement of the faculty and the college, tenured faculty are regularly evaluated every 4 years. In this evaluation process, the faculty are evaluated by the students and administration. The program coordinator and administration review this data.

Clinical supervisor evaluation of student performance as well as suggestions for curriculum improvement
Clinical supervisors and staff evaluate the students at midterm and at the final weeks of the clinical experience. Students would have been evaluated by 3 clinical sites at the completion of the program.

Graduate evaluation of program effectiveness
Graduates are emailed a Graduate survey to complete generally one year after completing the program. These results are reviewed by the program coordinator and available for the administration to view.

Employer evaluation of graduate preparedness to enter the workforce
After the graduate survey is completed, those employers that are provided by the graduates are sent an employer survey to complete. This data is reviewed by the program coordinator.

Graduate performance on the national certification examinations
This data is collected by the program coordinator as reported by the examination agencies and shared with the Advisory Board at one of the biannual meetings that is also attended by the administration.
By authority of the Board of Trustees of the
UNIVERSITY OF ILLINOIS
and upon recommendation of the Senate
at Chicago
Susan Marie Campos
has been admitted to the Degree of
Master of Education
and is entitled to all rights and honors thereto appertaining.
Witness the Seal of the University and the signatures of its Officers
this fourth day of December, nineteen hundred and eighty-nine.

President of the Board of Trustees
President of the University
Secretary of the Board of Trustees
Chancellor
Division of Career Education
Nuclear Medicine Technology A.A.S.

Curriculum C2178

Nuclear Medicine uses small amounts of radioactive materials to diagnose and treat patients. The Nuclear Medicine technologist administers the radiopharmaceutical and images the area or organ of interest to detect the radiation being emitted. The detectors used for imaging are integrated with computers to provide detailed images showing function and anatomy. Graduates of the program are employed as entry-level technologists in various settings from hospitals, clinics and medical imaging centers anywhere in the United States.

This two-year Associate’s degree program at Triton is the only one of its kind offered by an Illinois community college.

This program is accredited by the Joint Review Committee on Educational programs in Nuclear Medicine Technology, 2000 W. Danforth Road, Suite 130, Edmond, OK, 73034; (405) 285-0546. Graduates qualify for the Nuclear Medicine Technology Certification Board and the American Registry of Radiologic Technology, Nuclear Medicine Registry examinations.

Program Prerequisites: Must score 4 or better on reading and writing placement exam or course equivalency, PHY100 (General Physics) and MAT 110P (College Algebra). Completion of the Math and Science prerequisites must not be more than 5 years old. In place of MAT110P, students can score at level 8 on Triton’s math placement test in the past two years. All coursework must be completed with a grade of “C” or better.

ASSOCIATE IN APPLIED SCIENCE DEGREE

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APM 102P Ethics and Law for Allied Health</td>
<td>1</td>
</tr>
<tr>
<td>BIS 240P Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>CHM 110P Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>NUM 100P Science of Nuclear Medicine</td>
<td>3</td>
</tr>
<tr>
<td>NUM 100P Radiation Safety and Protection</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours: 14
Professional Didactic Curriculum
Standard C2.2

Complete this form using lecture and laboratory courses. Clinical education hours should **not** be included on this form. Also note that clock hours, **not** credit hours, are requested in the columns.

If a content area is taught across multiple courses please list each course in the space provided. List only the specific number of clock hours in each course that are devoted to that particular content area.

<table>
<thead>
<tr>
<th>Courses Containing This Content (list by course prefix & number)</th>
<th>Total Lecture Clock Hours</th>
<th>Total Laboratory Clock Hours</th>
<th>TOTAL CLOCK HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of Patient Care</td>
<td>NUM155</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Cross-sectional Anatomy</td>
<td>NUM160</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NUM265</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NUM285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Statistics</td>
<td>NUM160</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NUM280/282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine & Radiation Physics</td>
<td>NUM100</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NUM280/282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Biology</td>
<td>NUM103</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NUM280/282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation Safety & Protection</td>
<td>NUM103</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NUM280/282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine Instrumentation</td>
<td>NUM140</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Quality Control & Quality Assurance</td>
<td>NUM140</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>NUM180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUM262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUM265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Applications for Nuc Med</td>
<td>NUM140</td>
<td>10.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NUM260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Diagnostic Nuc Med Procedures</td>
<td>NUM160</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUM260</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUM290</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Courses Containing This Content (list by course prefix & number)</td>
<td>Total Lecture Clock Hours</td>
<td>Total Laboratory Clock Hours</td>
<td>TOTAL CLOCK HOURS</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Immunology
NUM160
NUM280</td>
<td>1
3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Radionuclide Therapy
NUM280
NUM282</td>
<td>4
1.5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Positron Emission Tomography (PET)
NUM265</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Computed Tomography (CT)
NUM285</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Radionuclide Chemistry & Radiopharmacy
NUM100
NUM160
NUM262
NUM280/282</td>
<td>2
4
22
10</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Medical Ethics & Law
AHL102
NUM155</td>
<td>15
1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Healthcare Administration
NUM103
NUM282</td>
<td>1
8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Health Sciences Research Methods
NUM260</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Medical Informatics
NUM155</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pharmacology
NUM260
NUM262
NUM285</td>
<td>1
1
1.5</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

*Total Clock Hours 345.3

*Please note this form requests clock, not credit hours, and pertains only to didactic lecture & lab courses.
Triton College: Nuclear Medicine Proficiency Evaluation

<table>
<thead>
<tr>
<th>Student Name:</th>
<th>Procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Semester:</td>
</tr>
<tr>
<td>Clinical Affiliate:</td>
<td></td>
</tr>
</tbody>
</table>

Evaluator:
- Mock: []
- Actual: []

Equipment:
- S
- U
- NA
- Comments:

PRE-STUDY PREPARATION:
- Check physician orders and requisition before study
- Review patient history
- Identify indication for exam
- Ensure patient is properly prepped if necessary
- Identify radiopharmaceutical and proper dose
- Identify mechanism of localization and route of administration
- Identify procedure time frames for injection and imaging
- Explain procedure to patient

CAMERA PREPARATION:
- Choose proper collimator
- Select energy and window settings
- Select static vs dynamic parameters
- Set up time/counts per view
- Set up ancillary equipment

COMPUTER PARAMETERS:
- Enter patient information
- Select proper protocol for study
- Select proper matrix
- Select patient views (time/counts per view)
- Static/dynamic SPECT
- Rotation/number of views/time per view

PERFORM STUDY:
- Attend to patient’s needs
- Properly transfer patient to imaging table
- Properly position patient
- Performs safe administration of radiopharmaceutical
- Circle method of administration: direct venipuncture, inject through existing line, inhalation, oral, not allowed to administer
- Adjust instrument correctly to insure best quality image
- Acquire prescribed images
- Adapts protocol to meet patient’s needs
- Completes all necessary paper work
- Format images for film
- Check films with technologist/physician
- Release patient
- Analyze computer data
- Correctly responds to additional questions by technologist

S = Satisfactory
U = Unacceptable
NA = not applicable

Satisfactory level: Student completes task in an effective and safe manner
Unsatisfactory level: Student can not complete the task in an effective and safe manner
Any U’s appearing on evaluation will warrant a repeat proficiency.

Student Signature:
PET Proficiency Assignment

Complete the following at the clinical site during your PET rotation. While observing PET procedures, answer the following about one of the studies you saw.

1. What type of PET or PET/CT system was used?

2. What type of crystal does this system have?

3. What quality control tests were performed?

4. What was the indication for performing this study?

5. What was the actual dose administered to the patient?

6. Was a blood glucose level obtained?

7. If a blood glucose was taken, what was the result?

8. What is the acceptable upper limit for blood glucose at this facility in order to have a PET scan?

9. How much time elapsed between the injection and the start of the scan?

10. How was the patient positioned and what anatomical markers were used to set the limits of the scan?

11. Is this system a conventional PET/CT or Time of Flight PET or PET/CT?
12. How many beds were acquired for this study?

12. What practices in the hot lab did you notice were different from the routine practices you have seen using technetium based radiopharmaceuticals?

13. Provide a copy of the scan and a written explanation with your interpretation of the study. Include normal areas of uptake as well as any abnormal findings.
Division of Career Education

Nuclear Medicine Technology - Program Outcomes

Certification Board Exam Pass Rate

Program Outcomes

Certification Board Exam Pass Rate