VITAL SIGNS

Academic Success Center
Vital Signs

- Temperature, pulse, respiration, blood pressure (B/P) & oxygen saturation are the most frequent measurements taken by a nurse.

- Because of the importance of these measurements they are referred to as Vital Signs. They are important indicators of the body’s response to physical, environmental, and psychological stressors.
Vital Signs

- Vital Signs may reveal sudden changes in a patient’s condition in addition to changes that occur progressively over time. A baseline set of Vital Signs are important to identify changes in the patient’s condition.

- Vital Signs are part of a routine physical assessment and are not assessed in isolation. Other factors such as physical signs & symptoms are also considered.

- **Important Consideration:**
 - A client’s normal range of vital signs may differ from the standard range.
When to take Vital Signs?

1. On a client’s admission
2. According to the physician’s order or the institution’s policy or standard of practice
3. When assessing the client during home health visit
4. Before & after a surgical or invasive diagnostic procedure
5. Before & after the administration of meds or therapy that affect cardiovascular, respiratory & temperature control functions.
6. When the client’s general physical condition changes LOC, pain
7. Before, after & during nursing interventions influencing vital signs
8. When patient reports symptoms of physical distress
Assessing Body Temperature

- **CORE TEMPERATURE**: Temperature of the body tissues, is controlled by the hypothalamus (control center in the brain) and maintained within a narrow range.

- Skin temperature rises & falls in response to environmental conditions & depends on blood flow to skin & amount of heat lost to external environment.

- The body’s tissues & cells function best between the range from 36 °C to 38 °C

- Temperature is lowest in the morning, highest during the evening.
Types of Thermometers

There are 3 types of thermometers:

- **GLASS MERCURY**: Mercury expands or contracts in response to heat.
- **ELECTRONIC**: Heat sensitive probe, (reads in seconds) there is a probe for oral/axillary use (red) & a probe for rectal use (blue). There are disposable plastic cover for each use. Relies on battery power – return to charging unit after use.
- **INFRARED TYMPANIC (Ear)**: Sensor probe shaped like an otoscope in external opening of ear canal. Ear canal must be sealed & probe sensor aimed at tympanic membrane return to charging unit after use.
Different Body Sites

<table>
<thead>
<tr>
<th>Body Site</th>
<th>Preparation and Considerations</th>
<th>Measurement Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>No hot or cold drinks or smoking 20 min prior to temp. Must be awake & alert. Not for small children (bite down)</td>
<td>Leave in place 3 min</td>
</tr>
<tr>
<td>Axillary</td>
<td>Non invasive – good for children. Less accurate (no major bld vessels nearby)</td>
<td>Leave in place 5-10 min. Measures 0.5 C lower than oral temp.</td>
</tr>
<tr>
<td>Rectal</td>
<td>When unsafe or inaccurate by mouth (unconscious, disoriented or irrational)</td>
<td>Leave in place 2-3 min. Measures 0.5 C higher than oral</td>
</tr>
<tr>
<td>Infant</td>
<td>Rapid measurement Easy assessibility Cerumen impaction distorts reading Otitis media can distort reading</td>
<td>2-3 seconds</td>
</tr>
</tbody>
</table>
Assessing Radial Pulse

● Left ventricle contracts causing a wave of blood to surge through arteries, called pulse. Felt by palpating artery lightly against underlying bone or muscle.
 ■ Carotid, brachial, radial, femoral, popliteal, posterior tibial, dorsalis pedis pulse.
● Assess: rate, rhythm, strength by using palpation & auscultation.

● PULSE DEFICIT: The difference between the radial pulse and the apical pulse. It indicates a decrease in peripheral perfusion from some heart conditions. Ex: Atrial fibrillation.
procedure for assessing pulses

- **Peripheral**: Place 2\(^{nd}\), 3\(^{rd}\) & 4\(^{th}\) fingers lightly on skin where an artery passes over an underlying bone. Do not use your thumb (feel pulsations of your own radial artery). Count 30 seconds X 2, if irregular, count radial for 1 min. and then apically for full minute.

- **Apical**: Beat of the heart at it’s apex or PMI (point of maximum impulse), in the 5\(^{th}\) intercostal space, midclavicular line, just below lt. nipple – listen for a full minute “Lub-Dub”
 - Lub – close of atrioventricular (AV) valves – tricuspid & mitral valves
 - Dub – close of semilunar valves – aortic & pulmonic valves
Assess: rate, rhythm, strength & tension

- **RATE**: Normal: 60-100, average 80 bpm
 - Tachycardia: greater than 100 bpm
 - Bradycardia: less than 60 bpm

- **RHYTHM**: The pattern of the beats (regular or irregular)

- **STRENGTH OR SIZE**: Or amplitude, the volume of blood pushed against the wall of an artery during the ventricular contraction
 - weak or thready (lacks fullness)
 - Full, bounding (volume higher than normal)
 - Imperceptible (cannot be felt or heard)

0----------------- 1+ -----------------2+------------------ 3+ ----------------4+
Absent Weak NORMAL Full Bounding
Normal Heart Rate

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate (Beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>120-160</td>
</tr>
<tr>
<td>Toddlers</td>
<td>90-140</td>
</tr>
<tr>
<td>Preschoolers</td>
<td>80-110</td>
</tr>
<tr>
<td>School agers</td>
<td>75-100</td>
</tr>
<tr>
<td>Adolescent</td>
<td>60-90</td>
</tr>
<tr>
<td>Adult</td>
<td>60-100</td>
</tr>
</tbody>
</table>
Assessing pulse

- **TENSION**: Or elasticity, the compressibility of the arterial wall, is pulse obliterated by slight pressure (low tension or soft).

- **Stethoscope**
 - **DIAPHRAGM**: High pitched sounds, bowel, lung & heart sounds – tight seal
 - **BELL**: Low pitched sounds, heart & vascular sounds, apply bell lightly (hint think of Bell with the “L” for Low)
Respirations

- Assess by observing rate, rhythm & depth
 - INSPIRATION: Inhalation (breathing in)
 - EXPIRATION: Exhalation (breathing out)
 - Inspiration & Expiration is automatic & controlled by the medulla oblongata (respiratory center of brain)
 - Normal breathing is active & passive
 - Women breathe thoracically, while men & young children breathe diaphramatically usually
 - Asses after taking pulse, while still holding hand, so pt is unaware you are counting respiratons
Assessing Respiration

<table>
<thead>
<tr>
<th>Rate</th>
<th>Number of breathing cycles/minute (inhale/exhale-1cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORMAL: 12-20 breaths/min – adult - Eupnea – normal rate & depth breathing</td>
</tr>
<tr>
<td></td>
<td>Abnormal increase – tachypnea</td>
</tr>
<tr>
<td></td>
<td>Abnormal decrease – bradypnea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>Absence of breathing – apnea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount of air inhaled/exhaled</td>
</tr>
<tr>
<td></td>
<td>normal (deep & even movements of chest)</td>
</tr>
<tr>
<td></td>
<td>shallow (rise & fall of chest is minimal)</td>
</tr>
<tr>
<td></td>
<td>SOB shortness of breath (shallow & rapid)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Regularity of inhalation/exhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (very little variation in length of pauses b/w Inspiration & Expiration)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Digressions from normal effortless breathing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dyspnea – difficult or labored breathing</td>
</tr>
<tr>
<td></td>
<td>Cheyne-Stokes – alternating periods of apnea and hyperventilation, gradual increase & decrease in rate & depth of resp. with period of apnea at the end of each cycle.</td>
</tr>
</tbody>
</table>
Blood Pressure

- Force exerted by the blood against vessel walls. Pressure of blood within the arteries of the body – Lt. ventricle contracts – blood is forced out into the aorta to the large arteries, smaller arteries & capillaries
 - Systolic- force exerted against the arterial wall as Lt. ventricle contracts & pumps blood into the aorta – max. pressure exerted on vessel wall.
 - Diastolic – arterial pressure during ventricular relaxation, when the heart is filling, minimum pressure in arteries.

- Factors affecting B/P
 - lower during sleep
 - Lower with blood loss
 - Position changes B/P
 - Anything causing vessels to dilate or constrict - medications
Blood Pressure

- Measured in mmHg – millimeters of mercury
- Normal range
 - Systolic: 110-140 Diastolic: 60-90
 - Hypertensive: >160, >90
 - Hypotensive: <90

- Non invasive method of B/P measurement
 - Sphygmomanometer, stethoscope
 - 3 types of sphygmomanometers
 - Aneroid – glass enclosed circular gauge with needle that registers the B/P as it descends the calibrations on the dial.
 - Mercury – mercury in glass tube - more reliable – read at eye level.
 - Electronic – cuff with built in pressure transducer reads systolic & diastolic B/P
Blood Pressure

- **CUFF**: Inflatable rubber bladder, tube connects to the manometer, another to the bulb, important to have correct cuff size (judge by circumference of the arm not age)
 - Support arm at heart level, palm turned upward - above heart causes false low reading
 - Cuff too wide – false low reading
 - Cuff too narrow – false high reading
 - Cuff too loose – false high reading

- Listen for **Korotkoff sounds** – series of sounds created as blood flows through an artery after it has been occluded with a cuff then cuff pressure is gradually released.

- Do not take B/P in
 - Arm with cast
 - Arm with arteriovenous (AV) fistula
 - Arm on the side of a mastectomy. Ex: right mastectomy, right arm
Blood Pressure Lower Extremity

- Best position prone – if not – supine with knee slightly flexed, locate popliteal artery (back of knee).

- Large cuff 1 inch above artery, same procedure as arm. Systolic pressure in legs maybe 10-40 mm hg higher

- If unable to palpate a pulse – you may use a doppler stethoscope
Oxygen Saturation (Pulse Oximetry)

- Non-invasive measurement of oxygen saturation

- Calculates SpO2 (pulse oxygen saturation) reliable estimate of arterial oxygen saturation
 - Probes – finger, ear, nose, toe
 - Patient with PVD or Raynauds syndrome – difficult to obtain.

- Normal – 90-100%
 - Remove nail polish
 - Wait until oximeter readout reaches constant value & pulse display reaches full strength
 - During continuous pulse oximetry monitoring – inspect skin under the probe routinely for skin integrity – rotate probe.
Reference

- Created by: Maria Burbano